Sección 2 Redes bayesianas
Los paquetes que usaremos en esta sección son:
- CRAN:
tidyverse
(dplyr
,ggplot2
,purrr
) de Hadley Wickham (2017),bnlearn
de Scutari and Ness (2019),igraph
Csárdi (2019) ygRain
de Højsgaard (2016).
install.packages(c("tidyverse", "bnlearn", "igraph, "gRain", "BiocManager"))
install.packages("BiocManager")
BiocManager::install("Rgraphviz")
Y las referencias bibliográficas son Koller and Friedman (2009), Ross (1998) y Wasserman (2004).
Referencias
Carey, Vince, Li Long, and R. Gentleman. 2019. RBGL: An Interface to the Boost Graph Library. http://www.bioconductor.org.
Csárdi, Gábor. 2019. Igraph: Network Analysis and Visualization. https://CRAN.R-project.org/package=igraph.
Hansen, Kasper Daniel, Jeff Gentry, Li Long, Robert Gentleman, Seth Falcon, Florian Hahne, and Deepayan Sarkar. 2019. Rgraphviz: Provides Plotting Capabilities for R Graph Objects.
Højsgaard, Søren. 2016. GRain: Graphical Independence Networks. https://CRAN.R-project.org/package=gRain.
Koller, Daphne, and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning. The MIT Press.
Ross, Sheldon M. 1998. A First Course in Probability. Fifth. Upper Saddle River, N.J.: Prentice Hall.
Scutari, Marco, and Robert Ness. 2019. Bnlearn: Bayesian Network Structure Learning, Parameter Learning and Inference. https://CRAN.R-project.org/package=bnlearn.
Wasserman, Larry. 2004. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in Statistics. New York: Springer. https://doi.org/10.1007/978-0-387-21736-9.
Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the ’Tidyverse’. https://CRAN.R-project.org/package=tidyverse.